Контрольная по математике

Векторная функция скалярного аргумента

Если каждому значению параметра t из некоторого промежутка  ставится в соответствие по некоторому правилу определенный вектор, то говорят, что задана вектор-функция скалярного аргумента t: .

Откладывая векторы  при  от начала координат, получаем траекторию движения конца вектора, называемую годографом вектор-функции .

Проекции вектора  на оси координат являются функциями аргумента t, поэтому можно записать вектор-функцию в координатной форме:

,

где векторы  – это орты координатных осей Ox, Oy и Oz.

Первую, вторую и т.д. производные вектор-функции  находят дифференцированием ее проекций x(t), y(t) и z(t) по аргументу t:

,

.

Если параметр t – это время, то векторное уравнение  называют уравнением движения точки, а годограф вектор-функции  является траекторией движения. Тогда вектор-производная  называется скоростью движения точки в момент времени t:

. (14)

Скорость движения – это вектор, направленный по касательной к траектории движения (годографу) в соответствующей точке в сторону возрастания параметра t. Вектор

 (15)

называется ускорением движения точки в момент времени t.

Пример 8. Разложить в ряд Тейлора по степеням x функцию .

Решение. Зная разложение функции в биномиальный ряд, сходящийся на интервале (-1,1), преобразуем данную функцию так, чтобы воспользоваться биномиальным рядом

.

Воспользуемся биномиальным разложением при , полагая в разложении x равным :

, где .

После преобразований получим

.


На главную