Неопределенный интеграл лекции и задачи

Начертательная геометрия
Виды проецирования
Проецирование точки на две плоскости проекций
Натуральная величина отрезка прямой
Взаимное положение двух прямых
Плоскость
Прямая и точка в плоскости
Параллельность плоскостей
Параллельность прямой и плоскости
Основные задачи замены плоскостей проекций
ОБРАЗОВАНИЕ И ИЗОБРАЖЕНИЕ ПОВЕРХНОСТЕЙ
Цилиндроид, коноид, косая плоскость.
Пересечение поверхностей плоскостью
Прямой круговой усечённый конус
Сущность аксонометрического проецирования
Косоугольная фронтальная диметрия
 
Французский стиль в русской архитектуре
Архитектура барокко во Франции
Строительство королевского дворца Лувра
павильон версальского парка — Малый Трианон
Рококо
Главный корпус Педагогического института (Герцена)
Ампир
Русский ампир в архитектуре
Величайший из зодчих России Растрелли
здание Академии художеств в Петербурге
Французский классицизм в Москве VII-XVIII
Московский Воспитательный дом
Архитектура Таганрога
Билеты по истории искусства
Архитектура Англии
Архитектура Франции
Архитектура Германии
Антуан Жан Гро
Романтизм

ПЕЙЗАЖ В АНГЛИИ

Немецкий романтизм
Филипп Отто Рунге
Эжен Делакруа
Барбизонская школа
Ренуар Пьер Огюст
Баухауз
художники Шлеммер, Пауль Клее, Георг Мухе, Лион Файнингер.
Японское жилище
Архитектура

Архитектура России конца XIX начала XX века

Архитектура и скульптура готики
Архитектура Франция
Франция — родина готических соборов.
Готический стиль в Германии
Клаус Слютер Пророк Даниил Колодец пророков
Американский дизайн и архитектура
идеи Готфрида Земпера
Влияние современного искусства на дизайн и архитектуру ХХ века
Русский авангард
Авангардизм
Работы Малевича и Лисицкого
объединение “Синий всадник”
Творчество Татлина, Родченко и Степановой
Развитие архитектуры в первые годы Советской власти
 

Определение и свойства неопределенного интеграла Первообразная и неопределённый интеграл

В этом подразделе рассматривается задача отыскания функции, для которой заданная функция является производной.

Основные свойства интеграла Все рассматриваемые в этом пункте функции определены на некотором фиксированном промежутке D. Если функция F дифференцируема на некотором промежутке, то на нём   или, что то же самое, .

Табличные интегралы Операция нахождения неопределённого интеграла от данной функции, называемая интегрированием, является действием, обратным дифференцированию, т. е. операции нахождения по данной функции её производной. Поэтому всякая формула, выражающая производную той или иной функции, т. е. формула вида , может быть обращена (записана в виде интегральной формулы) .

Нахождение неопределенных интегралов Интегрирование подстановкой

Интегрирование по частям Если функции  и  дифференцируемы на некотором промежутке и на этом промежутке существует интеграл , то на нём существует и интеграл , причём .

Интегрирование рациональных функций Переходим к изучению вопроса об интегрировании рациональных функций вида , где  – некоторые многочлены.

Интегрирование трансцендентных функций

На главную