Решение курсовой по электротехнике

Полупроводниковые диоды

В пограничном слое двух полупроводников с различным характером электропроводности при одном направлении тока дырки и электроны движутся навстречу друг другу, и при их встрече происходит рекомбинация. В цепи, таким образом, протекает ток (рис. 12.4 а).

Если изменить направление тока на обратное (рис.12.4 б), то изменится и направление движения дырок и электронов. Носители зарядов при этом не приближаются к граничной поверхности полупроводников, а удаляются от нее.

  а) б)

Рис. 12.4

В результате в пограничной области образуется слой, лишенный свободных носителей зарядов. Постоянный ток через этот слой проходить не может. В реальных условиях очень малый ток проходит через этот слой вследствие наличия в полупроводнике, наряду с примесной, некоторой собственной электропроводности. Однако сопротивление цепи в этом случае (рис. 12.4 б) во много раз больше, чем в предыдущем случае (рис. 12.4 а).

Электронно-дырочный, или p-n, переход представляет собой электрический переход между p и n зонами полупроводника. Электронный прибор с таким переходом называется полупроводниковым диодом. Он обладает односторонней проводимостью. Все полупроводниковые диоды по конструктивному исполнению делят на точечные и плоскостные. Точечный диод состоит из пластины германия или кремния с электропроводностью n-типа и вплавленной в нее стальной проволочкой (рис. 12.5 а). У точечного диоды линейные размеры p-n - перехода много меньше его толщины. Из-за малой площади контакта пря-

 

  а) б)

Рис. 12.5

мой ток таких диодов, а также их межэлектродная емкость сравнительно малы, поэтому их используют в основном для выпрямления тока в слаботочных устройствах сверхвысокой частоты. Вольт–амперные характеристики точечных диодов приведены на рис. 12.5 б.

В плоскостных диодах p-n - переход образован двумя полупроводниками с различными токами электропроводности, причем линейные размеры перехода много больше его толщины. Площадь перехода колеблется в широких пределах: от долей мкм2 до нескольких см2, поэтому прямой ток плоскостных диодов составляет от единиц до тысяч ампер. Конструкция и вольт-амперные характеристики плоскостных диодов показаны на рис. 12.6 а, б.

а)  б)

Рис.12.6

Основными параметрами диодов являются: прямой максимальный ток диода , прямое напряжение , максимально допустимое обратное напряжение , обратный ток диода .

Электронные приборы и устройства Возникновение электроники было подготовлено всем ходом развития промышленного производства и в частности электротехники. В цепи замечательных открытий и изобретений в этой области следует особо выделить такие достижения, как открытие явления термоэлектронной эмиссии (1887 г.), создание электровакуумного диода английским ученым Я. Флемингом (1904 г.) и триода Ли де Форестом в США в 1907 г. Эти изобретения позволили генерировать и усиливать электромагнитные колебания. Электроника – важнейшая отрасль науки и техники, изучающая физические процессы, происходящие в электровакуумных и полупроводниковых приборах при взаимодействии заряженных частиц и электрических полей, а также занимающаяся разработкой и созданием электронных приборов и устройств для измерения, контроля, обработки и хранения информации.

Тиристоры представляют собой кристаллическую структуру из четырех слоев чередующихся электронной и дырочной проводимостей  

Биполярные транзисторы Транзисторы являются управляемыми полупроводниковыми приборами, обеспечивающими усиление сигналов. По принципам действия их делят на управляемые электрическим током (биполярные) и управляемые электрическим полем (полевые).

Интегральные микросхемы Постоянное усложнение схем электронных устройств привело к существенному увеличению количества входящих в них элементов. В связи с этим возникает проблема все большей миниатюризации электронных приборов. Это стало возможным только на базе современного научно-технического направления электроники – микроэлектроники, основным принципом которой является объединение в одном сложном микроэлементе многих простейших – диодов, транзисторов, резисторов, конденсаторов и др

Электронно-оптические приборы Индикаторные приборы служат для преобразования электрических сигналов в визуально воспринимаемую информацию. В зависимости от назначения индикаторные приборы могут иметь разную степень сложности и базироваться на различных физических принципах. В настоящее время для отображения знаковой информации наибольшее распространение получили электронно-лучевые, вакуумно-люминесцентные, газоразрядные, полупроводниковые и жидкокристаллические индикаторы.

Полупроводниковые индикаторы Принцип действия полупроводникового индикатора основан на излучении квантов света при рекомбинации носителей заряда в области р-n – перехода, к которому приложено прямое напряжение. К полупроводниковым индикаторам относится светодиод – полупроводниковый диод, в котором предусмотрена возможность вывода светового излучения из области р-n – перехода сквозь прозрачное окно в корпусе. Цвет определяется материалом, из которого выполнен светодиод. Выпускают светодиоды красного, желтого и зеленого свечения.

Импульсная модерация Как уже указывалось, в процессе модуляции любого вида принимают участие модулирующий сигнал и некоторая функция, играющая роль несущей. В двух предыдущих главах описан случай, когда в качестве несущей используется гармоническое колебание. Другим важным примером является импульсная модуляция, при которой несущей служит последовательность одинаковых импульсов, один из параметров которых изменяется в соответствии с изменением модулирующего воздействия.

Волоконно-оптический прибор – это диэлектрический волновод, по которому энергия передается в виде электромагнитных волн оптического диапазона (f ≈ 1014 Гц). Если энергия передается в форме видимого излучения, то такой волновод называется световодом

12.2.3. Стабилитроны

 Стабилитрон представляет собой специальный полупроводниковый диод, напряжение электрического пробоя которого очень слабо зависит от протекающего через него тока. Стабилитрон служит для стабилизации напряжения в различных электронных устройствах (например, блоках питания). Вольт-амперная характеристика стабилитрона приведена на рис. 12.7.

Рис. 12.7

Из характеристики видно, что напряжение стабилизации  слабо изменяется при достаточно больших изменениях тока стабилизации . Это свойство стабилитрона используют для получения стабильного напряжения в стабилизаторах напряжения.

Одним из основных параметров, учитываемых при выборе стабилитронов, является напряжение стабилизации (пробоя). В справочных данных указывается номинальное напряжение стабилизации для определенного тока. В настоящее время отечественной промышленностью серийно выпускаются стабилитроны с напряжением стабилизации в диапазоне 5…300 В и с допусками на разброс номинального напряжения 5, 10, 15 %. Наличие разброса ограничивает применение некоторых схем включения стабилитронов и приводит иногда к усложнению схем.

Напряжение стабилизации зависит также от температуры стабилитрона. Количественно эта зависимость выражается температурным коэффициентом напряжения , представляющим собой отношение изменения напряжения стабилизации к изменению температуры стабилитрона, приведенное к одному вольту, %/°C

,  (12.1)

где  и  – напряжения стабилизации при температурах  и .

Дополнительными характеристиками стабилитрона являются динамическое сопротивление на участке стабилизации , минимальный  и максимальный  ток стабилизации.

Параметры схем со стабилитронами выбираются так, чтобы длительный средний ток через них был меньше максимально допустимого  Значение тока  ограничено допустимой по тепловому режиму мощностью рассеяния и представляет собой отношение этой мощности к напряжению стабилизации. Кратковременно же стабилитрон способен выдерживать токи, значительно большие  Значение температурного коэффициента возрастает с увеличением напряжения стабилизации. Поэтому в ряде случаев целесообразно заменить один высоковольтный стабилитрон цепочкой низковольтных, соединенных последовательно.

Конструктивно стабилитроны выполняются аналогично выпрямительным диодам.


На главную