Решение курсовой по электротехнике

Линейные цепи синусоидального тока

Общие сведения

 В электроэнергетике используют в основном переменный ток. В настоящее время почти вся электрическая энергия вырабатывается в виде энергии переменного тока. Основное преимущество переменного тока по сравнению с постоянным током заключается в возможности просто и с минимальными потерями преобразовывать напряжение при передаче энергии. Генераторы и двигатели переменного тока имеют более простое устройство, надежней в работе и проще в эксплуатации по сравнению с машинами постоянного тока.

Амплитуда, частота и фаза синусоидального тока и напряжения

 В современной технике широко используются переменные токи: синусоидальные, прямоугольные, треугольные и др. (рис. 2.1). Значение тока в любой момент времени называется мгновенным значением. Мгновенные значения тока, напряжения, ЭДС обозначаются буквами .

  Рис. 2.1 

Токи, мгновенные значения которых повторяются через равные промежутки времени, называют периодическими, а наименьший промежуток времени, через который эти повторения наблюдаются, называют периодом Т (рис. 2.1).

Если кривая изменения периодического тока описывается синусоидой, ток называется синусоидальным. Если кривая отличается от синусоиды – ток несинусоидальный. В электрических цепях переменного тока наиболее часто используют синусоидальную форму, характеризующуюся тем, что все напряжения и токи являются синусоидальными функциями времени. В генераторах переменного тока стремятся получить ЭДС, изменяющуюся во времени по закону синуса. Тем самым обеспечивается наиболее выгодный эксплуатационный режим работы электрических установок.

Действующее значение синусоидального тока Мгновенное значение переменного тока все время изменяется от нуля до максимального значения. Однако переменный ток, как и постоянный, измеряется в амперах. Какой же смысл мы вкладываем в термин «переменный ток»? Можно было бы характеризовать переменный ток его амплитудой.

Индуктивная катушка в цепи синусоидального тока Индуктивная катушка как элемент схемы замещения реальной цепи синусоидального тока дает возможность учитывать при расчете явление самоиндукции и явление накопления энергии в ее магнитном поле.

Анализ цепей синусоидального тока с помощью векторных диаграмм Совокупность векторов, изображающих синусоидальные ЭДС, напряжения и токи одной частоты и построенных на плоскости с соблюдением их ориентации друг относительно друга, называют векторной диаграммой. Векторные диаграммы широко применяются при анализе режимов работы цепей синусоидального тока, что делает расчет цепи наглядным.

Неразветвленная цепь синусоидального тока Рассмотрим цепь из трех последовательных токоприемников : первые два имеют активно-индуктивный характер, третий является последовательным соединением резистора и конденсатора. Проведем анализ цепи по векторной диаграмме

Пример. Определить действующее значение входного тока по известным токам в параллельных ветвях (риc. 2.15 а) = 3 A; = 1 A; = 5 A. Решение находим по первому закону Кирхгофа

Комплексный метод расчета цепей синусоидального тока Широкое распространение на практике получил метод расчета цепей синусоидального тока, который принято называть комплексным. Сущность метода состоит в том, что синусоидальные токи, напряжения и ЭДС изображаются комплексными числами, а геометрические операции над векторами заменяются алгебраическими операциями над комплексными числами. Этот метод позволяет рассчитывать цепи синусоидального тока алгебраически аналогично цепям постоянного тока.

Комплекс полного сопротивления и комплекс полной проводимости. Законы Кирхгофа в комплексной форме

 Все синусоидальные функции времени (например, ток) записывают в одинаковой форме:

 (2.1)

где – мгновенное значение тока; – максимальное (амплитудное) значение тока (рис. 2.2);  – угловая частота;   – начальная фаза.

Аргумент синуса  называется фазой. Угол  равен фазе в начальный момент времени = 0 и поэтому называется начальной фазой. Фаза с течением времени непрерывно растет (рис 2.2). После ее увеличения на  весь цикл изменения тока повторяется. В течение периода  фаза увеличивается на . Поэтому отношение определяет скорость изменения фазы и называется угловой частотой

Рис. 2.2

 

(2.2) 

где  – частота, равная числу периодов в секунду, Гц. При стандартной частоте = 50 Гц угловая частота За аргумент синусоидальной функции принимают время  или угол .

 Таким образом, для определения мгновенных значений  и  необходимо определить их параметры: амплитуду, угловую частоту и начальную фазу.

 Постоянный ток можно рассматривать как частный случай переменного тока, частота которого равна нулю. В современной технике используется широкий диапазон частот переменных токов от сотых долей до миллиардов Герц. В электроэнергетике нашей страны и Европы стандартная частота 50 Гц, США – 60 Гц.

Рис. 2.3

 Синусоидальные ЭДС в современной технике получают различными методами в электромашинных или электронных генераторах и других устройствах. Наглядным примером является наведение ЭДС за счет электромагнитной индукции в рамке, вращающейся в однородном магнитном поле (рис. 2.3).

 Допустим, что рамка площадью  содержит  витков и вращается с постоянной угловой скоростью   в магнитном поле с индукцией . Тогда потокосцепление рамки

.

 По закону электромагнитной индукции в рамке наводится ЭДС

.

 Следовательно, ЭДС изменяется по синусоидальному закону.

 Рассмотренный способ получения ЭДС является лишь наглядной иллюстрацией и в технике не используется ввиду экономической нецелесообразности создавать достаточно сильное равномерное магнитное поле в таком большом воздушном промежутке.

 В промышленности для получения синусоидальных ЭДС применяют электрические машины – синхронные генераторы, приводимые во вращение тепловыми, газовыми, гидравлическими и др. двигателями.


На главную